Loading AI tools
من ويكيبيديا، الموسوعة الحرة
في النسبية العامة، يعد الموتر المتري (أو التنسور المتري أو ببساطة المترية) الكائن الأساسي في الدراسة. يمكن اعتباره بصورة عمومية رخوة على أنه كمون جذبوي معلوم من جاذبية نيوتن. يتضمن التنسور كل الهندسة الفراغية و البنية السببية من الزمكان، المستخدمة في تعريفات مثل المسافة، الحجم، الانحناء، الزاوية، المستقبل، والماضي.
يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. (يناير 2022) |
التنسور المتري للزمكان في النسبية العامة، تمت كتابته بصورة مصفوفة |
العلامات والاصطلاحات: في هذا المقال نتناول البصمة المترية والتي تكون غالباً موجبة (− + + +); طالع اصطلاح العلامة. جرت العادة في النسبية، يتم اعتماد وحدات حيث تكون سرعة الضوء c = 1. سيبقى ثابت الجذب العام G سيبقى مصرحا به. اصطلاح الجمع، سيتم توظيفه حيثما تكررت عمليات جمع الفهرسة.
يمثل الزمكان رياضياتياً بمتعدد شعب تفاضلي رباعي الأبعاد M ويعطى المتري على أنه متباين، الرتبة الثانية، موتر متماثل على M، اصطلاحاً نرمز له بـ g. بالإضافة فإن المترية مطلوبة لكي تصبح غير منحل بتوقيع (-+++). عديد الشعب M المزود بمترية كهاته يدعى متعدد شعب لورنتزي.
بصورة أوضح، المترية هي نموذج خطي ثنائي متماثل على كل فضاء مماس من M والتي تتغير بطريقة ناعمة (أو تفاضلية) من نقطة لأخرى. إذا أعطينا متجهين مماسيين u و v عند نقطة x في M، يمكن تقدير المترية على u وv للحصول على عدد حقيقي:
يمكن فهم هذا على أنه تعميم للضرب القياسي في الفضاء الإقليدي المعروف. هذا التشبيه ليس دقيقاً مع ذلك. على خلاف الفضاء الإقليدي — حيث يكون الضرب موجب جازم — تعطي المترية كل فضاء مماس بنية فضاء مينكوفسكي.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.