Loading AI tools
كتاب من تأليف محمد بن موسى الخوارزمي من ويكيبيديا، الموسوعة الحرة
كتاب المختصر في حساب الجبر والمقابلة[1] هو كتاب في الرياضيات باللغة العربية بين (813 و833) من قبل عالم الرياضيات المسلم الخوارزمي، وضع الخوارزمي أسس علم الجبر كونها أول دراسة منهجية لحل معادلة من الدرجة الأولى والثانية، وقد عمل خلفاء الخوارزمي على توسيع نطاق عمله في كتب أخرى التي غالبا ما تحمل نفس العنوان.
كتاب المختصر في حساب الجبر والمقابلة | |
---|---|
كتاب المختصر في حساب الجبر والمقابلة | |
صفحة من الكتاب | |
معلومات الكتاب | |
المؤلف | محمد بن موسى الخوارزمي |
البلد | الدولة العباسية |
اللغة | العربية |
تاريخ النشر | 820 |
مكان النشر | بيت الحكمة |
الموضوع | رياضيات |
ويكي مصدر | كتاب المختصر في حساب الجبر والمقابلة - ويكي مصدر |
تعديل مصدري - تعديل |
في عهد المأمون (813-833)، التي كانت الدولة العباسية في أوج ازدهارها، طلب الخليفة من الخوارزمي - حيث كان عالما مشهورا يعمل في بيت الحكمة في بغداد - تقييم الطرق الرياضية المفيدة في إدارة هذه الدولة الضخمة التي تمتد من آسيا الوسطى إلى جبال البرانس.
الكتاب يحتوي على كل ما هو مفيد في حساب ما يحتاجه الناس في مسائل الميراث، ومشاكل التقسيم، والتقاضي، والتجارة، وبشكل عام لجميع العلاقات المتبادلة أو أيضًا في مسح الأراضي وحفر القنوات والحسابات الهندسية وأشياء أخرى متنوعة حيث ينقسم الكتاب إلى ثلاثة أجزاء:
وفي هذه الأطروحة، دراسة منهجية لمجموعة من المعادلات، وتغطي هذه الدراسة الحلول الكاملة لمعادلة رياضية، وتختلف طريقة وصف المعادلات في الكتاب عن الطريقة الحديثة للرياضيات حيث يتم عرضها بالمقادير الجبرية وهي المقادير أو الأعداد التي يحتاج إليها في حساب الجبر والمقابلة وهي ثلاثة على نحو التالي:
وللتوضيح يمكن ضرب المثال التالي كما هو معرف في بالشكل الحديث:
وأغلب ما ورد في كتب هي مسائل معادلاتها من الدرجة الأولى أو الثانية والتي صيغتها العامة بحسب المصطلح الرياضيات الحديثة حيث أنّ ( ، ، ) أعداد معلومة وهي:
ويمكن شرح ما سبق بالإشارة إلى أبيات الشعر لابن الياسمين في الأرجوزة الياسمينية:[2]
ومما يلاحظ بأنّ جميع المعادلات والعمليات الحسابية المذكورة في الكتاب يتم وصفها عن طريق صياغة الجمل باستخدام المقادير الجبرية وأيضاً في ذلك الوقت لم يكن معروفاً عند علماء الرياضيات الأعداد السالبة مما أدى به إلى التمييز بين ستة حالات التي تكون فيها الأعداد ، و و كلها موجبة:
أي معادلة من الدرجة الأولى أو الثانية يمكن تحويلها إلى إحدى الحالات الست المذكورة أعلاه بمعاملات موجبة. لهذا، استخدم الخوارزمي التقنيتين التي أعطت اسمها للكتاب: «الجبر» و«المقابلة»، الجبر والمقابلة هما جانبان مما يصطلح اليوم بـ«التحويل».
الجبر بمعنى «إصلاح الكُسر» [3] ، حيث تم نقل الكلمة إلى اللاتينية، وأصبحت algebra. الجبر هو تبسيط المعادلة من خلال إزالة الطرح وهذا بإضافة حدود في طرفيها. أي بالمصطلح الحديث الحصول على معادلة بمعاملات موجبة.
x2 = 40x − 4x2 تحول بالجبر إلى x2 + 4x2 = 40x، ثم إلى 5x2 = 40x.
في الواقع، سمى الخوارزمي الحدود المطروحة (مثل 2 × 4 في المثال السابق): «ناقص». الكلمة المستخدمة هي نفسها للدلالة على أطرافه لمبتوري الأطراف. وبالتالي الجبر هو استعادة ما هو مفقود في المعادلة.
إزالة الطرح بالجبر ليس كافيا للحصول على إحدى الحالات الست.
x2 + 5 = 40x + 4x2 يحتوي على مربعات في كلا الطرفين، ولكن كل طرف هو مجموع
المقابلة تتمثل في طرح كمية من نفس النوع (الدرهم، جذر أو مربع) بحيث لا يبقى منه في الجانبين من المعادلة في نفس الوقت.
في المعادلة التالية: x2 + 5 = 40x + 4x2 ، نطرح x2 للحصول على 5 = 40x + 3x2.
بقيت نسخة واحدة باللغة العربية موجودة بجامعة أكسفورد ومؤرخة في 1361 [4]، وفي عام 1831، نشر فردريك روزن ترجمة باللغة الإنجليزية معتمدا على هذا المخطوط. وقال، في مقدمته، أنه يلاحظ أن الكتابة «بسيطة وقابلة للقراءة» ولكن قد حُذف التشكيل، مما يجعل فهم بعض العبارات صعبا.[5]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.